Here is one of the first USB tuners that was available from Hauppauge Computer Works. Totally analog tuner of course, this model required 2 cables – a USB interface & a sound cable for the audio output of the tuner.
A/V connections.
For those who are interested. Here is the label with the model details.
Connection to an external antenna.
Bottom of the PCB.
Top of the PCB showing the USB interface IC (top left), cache memory (top right) & the main tuner assembly.
Here is a cheapo 500W rated ATX PSU that has totally borked itself, probably due to the unit NOT actually being capable of 500W. All 3 of the switching transistors were shorted, causing the ensuing carnage:
Here is the AC input to the PCB. Note the vapourised element inside the input fuse on the left. There is no PFC/filtering built into this supply, being as cheap as it is links have been installed in place of the RFI chokes.
Main filter capacitors & bridge rectifier diodes. PCB shows signs of excessive heating.
Filter capacitors have been removed from the PCB here, showing some cooked components. Resistor & diode next to the heatsink are the in the biasing network for the main switching transistors.
Heatsink has been removed, note the remaining pin from one of the switching transistors still attached to the PCB & not the transistor 🙂
Output side of the PSU, with heatsink removed. Main transformer on the right, transformers centre & left are the 5vSB transformer & feedback transformer.
Output side of the unit, filter capacitors, choke & rectifier diodes are visible here attached to their heatsink.
Comparator IC that deals with regulation of the outputs & overvoltage protection.
For those that are interested, here is the ID label, this is a PSP-2003.
Here the front of the unit has been removed, showing the first internal components.
Here is the unit with the LCD removed, here the mainboard is partially visible.
Left pad unit removed from the PSP, with the left speaker & the memory stick slot cover.
Rear of the left pad assembly, showing the speaker.
Joypad removed from the casing. Resistive unit.
Headphone/data board removed from the casing. This also has TV-Out on the PSP-200x series.
Mainboard removed. Main CPU is at the top. Sockets around the bottom connect to the UMD drive & UMD Drive.
Closeup of the main chipset. CPU is the top IC.
Rear of the mainboard, Memory Stick socket on the right.
Closeup of the WiFi chipset & the charging power socket on the right.
Closeup of the bettery connector & the charge controller IC.
UMD Drive removed from the rear of the casing. This is a miniature DVD style drive, using a 635nm visible red laser.
Rear of the UMD drive, showing the laser sled & drive motors. Both the spindle motor & the sled motor are 3-phase brushless type. The laser diode/photodiode array is at the top of the laser sled.
Not strictly teardown related, but here is the Linux version of the RTL8187B WiFi chipset driver for all those who require it, it’s not available on the Realtek website:
This is an old legacy wireless mouse from Logitech. This uses a ball rather than optical technology.
Bottom of the mouse, showing the battery cover & the mouse ball.
Top removed from the mouse, showing the PCB inside. The smaller PCB on the left supports the microswitches for the buttons & mouse wheel.
Closeup of small PCB showing the microswitches & the IR LED & phototransistor pair for the mouse wheel encoder.
View of main PCB, with interface IC lower right. Pair of quartz crystals provide clocking for the transmitter & internal µC.
Battery contacts are on lower left of the PCB. At the top are the IR pairs for the X & Y axis of the mouse ball.
Closeup of the pairs of IR LEDs & phototransistors that make up the encoders for X/Y movement of the mouse, together with the slotted wheels in the mouse base that rotate with the ball. Steel wire around the smaller PCB is the antenna.
Here is an old Belkin Wireless G network card. This is a PCMCIA version.
Here is the bottom of the device, with all the details.
Plastic antenna cover removed, showing the pair of 2.4GHz etched antennae. There is a pair of LEDs on the upper left of the PCB showing activity & link status.
Overall view of the PCB, antennae on the left, RF chipset in centre, WiFi controller IC on right, and PCMCIA socket on far right. Can below wireless controller is a quartz crystal for the clock.
Closeup of the chipset, a Ralink RT2560F wireless controller on the right & a RT2525L transceiver on the left.
This is an old USB 1.1 hub that was recently retired from service on some servers. Top of the unit visible here.
Bottom label shows that this is a model F5U021 hub, a rather old unit.
PCB is here removed from the casing, Indicator LEDs along the bottom edge of the board, power supply is on the left. Connectors on the top edge are external power, USB host, & the 4 USB outputs. Yellow devices are polyswitch fuses for the 500mA at 5v each port must supply.
This is the USB Hub Controller IC, which is a Texas Instruments TUSB2046B device. Power filter capacitors next to the USB ports are visible here also, along with 2 of the polyswitches.
The power supply section of the unit, which supplies regulated 5v to the ports, while supplying regulated 3.3v to the hub controller IC. Large TO-220 IC is the 5v regulator. Smaller IC just under the power selector switch is the 3.3v regulator for the hub IC. The switch selects between Host powered or external power for the hub.
Here is a cheap chinese made flash drive given out for free by Westlaw UK. Capacity 512MB
Here is the PCB removed from the casing, USB connector on the left, followed by the clock crystal for the flash controller, a CBM2092, which is a Chipsbank part. 512MB flash memory IC, unknown maker. Access LED on far right of the board.
This is a device designed to reset Epson brand ink cartridges that are reportedly out of ink, so they again report full to the printer Here is the front of the unit, with the guide for attaching to a cartridge.
Back of the device removed. 3 button cells provide power to the PCB. Indicator LED sticks out of the top of the device for reset confirmation.
Row of pads on far left edge of the PCB are presumably a programming header for the uC on the other side of the board.
Here is the front of the PCB, main feature being the grid of pogo pins to connect to the cartridge chip. IC on lower right of that is a MSP430F2131 uController, a Texas Instruments part.
The IC directly to the left of the pogo pin bed is a voltage regulator, to step down the ~4.5v of the batteries down to the ~3.3v that the uC requires.
This is a HP PhotoSmart 375 portable photo printer. With built in card reader, screen & PictBridge.
Top of the printer showing the UI Buttons & Screen.
Front of the unit, card reader slots at the top, Pictbridge USB connector at top left. Paper out slot at bottom. Cartridge door is on the right.
Here the cartridge door is open. Takes HP 95 Tri-Colour Inkjet Cartridge.
Battery compartment on the bottom of the unit. A Li-Ion battery pack can be installed here for mobile photo printing.
Specifications label.
Power adaptor & USB connection for PC use.
Rear door opened. Showing the paper feed tray.
Rear door has been removed in this shot. Paper feed roller & platen roller can be seen here.
Paper holder attached to rear door.
Bottom of the top cover, with connections for the buttons & LCD panel.
This is the main PCB of the unit. Controls all aspects of the printer. CPU in center, card reader sockets are along bottom edge. various support circuitry surrounds the CPU.
Rear shell has been removed here. Showing the main frame & the carriage drive motor on the left.
Closeup of the carriage drive motor & timing belt system. All the motors in this printer are DC servo motors, not steppers.
Main drive motor, feeds paper, drives rollers, operates cleaning mechanism for the inkjets.
Mainshaft encoder. Main drive motor is bottom right hand side with timing belt drive.
Closeup of the CPU. This is a Phillips ARM chip, unknown spec.
Detail of the card reader sockets, this unit takes all current types of Flash memory card.
An ICL barcode scanner from the 80s is shown here. This is the top of the unit with cover on.
Plastic cover removed from the unit showing internal components. Main PSU on left, scan assembly in center. Laser PSU & Cooling fan on right. Laser tube at top.
Closeup of laser scan motor. This unit scans the laser beam rapidly across the glass plate to read the barcode.
View of the bottom of the unit, showing the controller PCB in the centre.
The 3-phase motor driver circuit for the scan motor. 15v DC powered.
This is the laser unit disconnected from the back of the scanner. HT PSU is on right hand side, beam emerges from optics on left.
This unit is date stamped 1987. The oldest laser unit i own.
This is a Western Digital drive recently removed from my laptop when it died of a severe head crash.
Top of drive can be seen here.
Here the cover has been removed from the drive, showing the platter, head arm & magnet. Yellow piece top left is head parking ramp.
The head assembly of the drive is shown here. The head itself is on the left hand end of the arm in the plastic parking ramp. The other end of the arm holds the voice coil part of the head motor, surrounded by the magnet.
Bottom of drive, with controller PCB. SATA interface socket at bottom.
PCB removed from bottom of drive. Spindle motor connections & connections to the head unit can be seen on the bottom of the drive unit.
Controller PCB. Supports the cache, interface & motor controller ICs.
Closeup of the motor driver IC, this controls the speed of the spindle motor precisely to 5,400RPM. Also controls the voice coil motor controlling the position of the head arm on the platters.
Interface IC closeup. This IC receives signals from the head assembly & processes them for transmission to the SATA bus. Also holds drive firmware, controls the Motor driver IC & all other functions of the drive.
Cache Memory IC.
Tip Jar
If you’ve found my content useful, please consider leaving a donation by clicking the Tip Jar below!
All collected funds go towards new content & the costs of keeping the server online.